Question Paper Code : X 11213

B.E./B.Tech. DEGREE EXAMINATIONS, NOV./DEC. 2020 First Semester Civil Engineering MA 8151 : ENGINEERING MATHEMATICS – I (Common to all Branches Except Marine Engineering) (Regulations 2017)

Time : Three Hours

Maximum : 100 Marks

Answer ALL questions.

(10×2=20 Marks)

- 1. If $\lim_{x \to 1} \frac{f(x) 8}{x 1} = 10$, then find $\lim_{x \to 1} f(x)$.
- 2. If $xe^y = x y$, then find dy/dx by implicit differentiation.

Reg. No. :

- 3. Find $\partial u/\partial x$ and $\partial u/\partial y$ when $u(x, y) = x^y + y^x$.
- 4. If $z = xf\left(\frac{y}{x}\right)$, then find the value of $x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y}$, using Euler's theorem.
- 5. Let A denote the area of the region that lies in the graph of $f(x) = \sqrt{\sin x}$ between 0 and π . Use right endpoints to find an expression for A as a limit. (Do not evaluate the limit).
- 6. Determine whether integral $\int_{1}^{\infty} \frac{\ln(x)}{x} dx$ is convergent or divergent. Evaluate it, if
- 7. Find the area of a circle of radius 'a' by double integration in polar coordinates.
- 8. Evaluate $\int_{x=0}^{1} \int_{y=0}^{2} \int_{z-1}^{2} xy \, dx \, dy \, dz$.
- 9. Find the particular integral of $y'' + 2y' + y = \cosh x$.
- 10. Solve y''' + 2y'' + y' = 0.

X 11213

X11213

- 11. a) i) Use the intermediate value theorem to show that there is a root of the equation $\sqrt[3]{x} = 1 x$ in the interval (0, 1). (6)
 - ii) Show that the function f(x) = |x 6| is not differentiable at 6. Find a formula for first derivative of f and sketch its graph. (10)

(OR)

- b) i) Find the equation of the tangent line to the curve y = x⁴ + 2x² x at the point (1, 2).
 (4)
 - ii) Find the local maximum value, local minimum value, the interval of concavity and the inflection points of a function $f(x) = x^3 3x^2 12x$. Also sketch the graph of f that satisfies all the above conditions. (12)

12. a) i) Let
$$u = 3x + 2y - z$$
, $v = x - 2y + z$ and $w = x (x + 2y - z)$. Are u, v and w functionally related ? If so, find this relationship. (8)

ii) Find the dimensions of the rectangular box, open at the top, of maximum capacity whose surface area 432 sq.cm.(8)

(OR)

b) i) If
$$z = f(x, y)$$
, where $x = e^{u} + e^{-v}$ and $y = e^{-u} - e^{v}$, then show that
 $x \frac{\partial z}{\partial x} - y \frac{\partial z}{\partial y} = \frac{\partial z}{\partial u} - \frac{\partial z}{\partial v}$. (8)

ii) Find the Taylor's series expansion of $f(x, y) = x^2 y^2 + 2x^2 y + 3x y^2$ in powers of (x + 2) and (y - 1) up to the second degree terms. (8)

13. a) i) Prove that
$$\int_{-\pi}^{\pi} \sin mx \sin nx \, dx = \begin{cases} 0 & \text{if } m \neq n \\ \pi & \text{if } m = n \end{cases}$$
, where m and n are positive integers. (8)

ii) Evaluate the integral
$$\int \frac{x^2 - 2x - 1}{(x - 1)^2 (x^2 + 1)} dx$$
. (8)
(OR)

- b) i) Evaluate the integrals 1) $\int x^3 \sqrt{x^2 + 1} \, dx \text{ and } 2$) $\int_{0}^{1} \frac{1}{\left(1 + \sqrt{x}\right)^4} \, dx$. (8)
 - ii) Find the values of p for which the integral $\int x^p \ln(x) dx$ converges, and evaluate the integral for those values of p.⁰ (8)

X11213

14. a) i) Change the order of integration in $\int_{0}^{1} \int_{y}^{2-y} xy \, dx \, dy$ and then evaluate it.

- ii) Evaluate $\iiint_{V} x y z dx dy dz$, where V is the volume of the positive octant of the sphere $x^2 + y^2 + z^2 = 1$ by transforming to spherical polar coordinates. (8) (OR)
- b) i) Evaluate $\iint_{D} xy\sqrt{(1-x-y)} dx dy$, where D is the region bounded by x = 0, y = 0 and x + y = 1, using the transformation x + y = u, y = uv. (8)
 - ii) Find the volume of the cylinder bounded by $x^2 + y^2 = 4$ and the planes y + z = 4 and z = 0, using triple integral. (8)
- 15. a) i) Solve the simultaneous differential equations $\frac{dx}{dt} + 2y + \sin t = 0, \frac{dy}{dt} - 2x - \cos t = 0, \text{ given that } x = 0, y = 1 \text{ when } t = 0.$ (8)
 - ii) Use the method of undetermined coefficients to solve

$$y'' - 5y' + 6y = e^{3x} + \sin x.$$
 (8)
(OR)

b) i) Solve
$$x^2 y'' + xy' + y = x \ln(x)$$
. (8)

ii) Using the method of variation of parameters, solve $y'' + y = x \cos x$. (8)

(8)